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Virial Expansion for a Polymer with a 
Realistic Pair-Potential Interaction 
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No modern theory of polymer excluded volume adequately describes the cross- 
over from poor solvent to good solvent conditions; a fundamental difficulty is 
a singularity in the binary cluster integral. Mayer expansion techniques are 
applied to a model with a pair interaction between monomers to clarify the 
distinction between "geometric" and "solvent" contributions to excluded 
volume. Detailed calculations are undertaken for a hard-core potential and a 
mimic Lennard-Jones potential The significance of the singularity in the binary 
cluster integral for calculations in the crossover regime is discussed. 
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1. INTRODUCTION 

Tremendous progress over the last 25 years would lead some to believe 
that the polymer excluded-volume problem has been solved. Others would 
disagree. The renormalization group has not provided a satisfactory 
description of a polymer in the poor-solvent (weak-coupling) regime, per- 
turbation methods are hopelessly incapable of describing the good-solvent 
(strong-coupling) regime, there is no entirely satisfactory description of the 
crossover from poor solvent to good solvent conditions, and the limits in 
which excluded-volume chains exhibit universality are not fully understood. 

It is interesting to examine the obstacles to formulating an adequate 
description of the crossover regime. Modern theories describe an excluded- 
volume polymer using three fundamental quantities: a chain length param- 
eter, an excluded-volume strength parameter which accounts for both 
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"geometric" and "solvent" effects, and a cutoff length which ensures that 
certain integrals are finite.C~ 31 By "geometric" effects we mean those arising 
from monomer-monomer  interactions and by "solvent" or "temperature" 
effects we mean those arising from monomer-solvent interactions. The 
strength of excluded volume may be adjusted using any one of three 
possible mechanisms: the effective binary cluster integral] 41 a statistical 
weight, ~5~ or the cutoff length. I~1 None of the modern theories has yet 
established satisfactory correspondences between its parameters and those 
used by the other theories. This is a great difficulty. None of the recent 
efforts to bridge the poor-solvent regime with the good-solvent regime t6 91 
has been entirely successful. The problems here, we believe, are far from 
trivial. 

The matter becomes more complicated when the excluded-volume 
parameter is examined more closely. A recent study by Barrett and 
Benesch ~~ revealed that, for a freely jointed stick-bead model, the 
geometric contribution to the effective binary cluster integral is singular 
when bead diameter is equal to one-half the bond length. No such singularity 
is expected for the solvent contribution. The geometric and solvent effects 
are therefore very different. When viewed from the good-solvent or strong- 
coupling limit, this detail is absorbed with other geometric details into the 
excluded-volume strength parameter and is therefore "irrelevant." When 
viewed from the poor-solvent or weak-coupling limit, however, this 
"irrelevant" detail becomes a matter of some importance since, unlike the 
other geometric details, it cannot be described by a smoothly-varying 
parameter. We shall discuss this question in greater detail in the final 
section. 

Our limited aim in this paper is to clarify the relation of the geometric 
and temperature contributions in the poor-solvent regime. We shall apply 
the familiar techniques of the Mayer expansion for a condensing gas to 
the Domb-Joyce model ~5~ for a freely jointed stick-bead chain with 
realistic intermonomer interaction. The original Domb-Joyce paper shows 
explicitly how the model is applied for a b-function interaction, but states 
that for the more realistic "Rayleigh model of steps of fixed length .... the 
details require further investigation. "~5~ Over the 20 years or so that the 
model has been in use, this has never been done. 

2. PERTURBATION EXPANSION FOR A PAIR-POTENTIAL 
M O D E L  

The classic description of the poor-solvent regime is the perturbation 
expansion of Teramoto, Zimm, and Fixman13'41: 

4 _ 28 16~ ..2 
~ 2 =  1 + 3 - ' + ( ~ n - -  3 , -  + " ' "  (1 )  
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The e x c l u d e d - v o l u m e  var iab le  z is traditionally defined as 

and thus incorporates the number of bonds N and the effective binary 
cluster integral ~. The length of a single bond is a. The third parameter, the 
cutoff length, is implicitly applied in the evaluation of the coefficients. The 
expression (1) has been amply demonstrated by experiment. 

Domb and Joyce redefine z to include a w e i g h t  f a c t o r  w, as follows: 

3 , )  '/-'/~w; z =  ~ N 0~<w~<l (2) 

As discussed above, polymer excluded volume is a combination of geometric 
excluded volume and solvent condition. Increasing solvent temperature 
increases chain size, and lowering solvent temperature collapses the 
polymer. The ~9 temperature is defined to be the point where geometric 
excluded volume is balanced exactly by solvent condition, and chain 
dimensions are ideal. In (2), fl represents geometric excluded volume and 
w represents the solvent effect. 

In the Domb-Joyce model, the coefficients of (1) are computed using 
generating functions. Two of the simplest of these are 

and 

R(z)=  Z ltN zN  (3) 
N = 2  

w,(z)= 
N = 3  

The numbers uN and w~ ~ represent the number of N-step polygons and 
N-step theta graphs, respectively. The function R ( z )  represents the simplest 
l a d d e r  graph and W 3 ( z  ) represents the simplest n o n l a d d e r  graph (see ref. 11 
for a thorough explanation of these terms). 

If we write u = l - z ,  then for small values of u, these functions have 
the Darboux expansions ~5~ 

R ( z  ) = eo + e l u + . . .  + uJ/ '-( fo + f ~ u + . . .  ) 

and 

W3(z) = e~o31 + e',3'u + ..- + In u(f~o 3' + f~13'u + ... ) 

The dominant contribution to the generating function arises from the term 
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with the least noninteger exponent. To obtain the dominant contribution, 
then, it suffices to write 

and 

R ( z )  ~ f o u  '/2 

W3(z) ~f~o 3' In u 

Recipes for extracting UN and w~ I from these expressions may be found in 
ref. 11. 

We follow Yamakawa's r development for the partition function of 
the polymer. We have 

~ =  f e u(Rl"'"'Rx~ d 3 R l " ' d 3 R  N 

with U the potential energy of N + I  linearly linked monomers at 
R 0 ..... R N. We assume that U may be decomposed as follows: 

N 

U =  Y. u(r i)+ W(RI ..... RN) 
i =  I 

with u the effective bonding potential that links the monomers, and W the 
potential of mean force due to excluded volume. For convenience, we 
define 

ri = R j -  R i_ i; r(ri) = e ,,~,,~/kr 

At this point we make the usual superposition approximation and define 
Mayer functions fu, incorporating the weight factor w. The partition func- 
tion may be written 

~ = f  r(r,) I-I [1 -~'Z.k ] d3", �9 ..d"rN 
i I O < ~ j < k < ~ N  

Developing the second product, we obtain the usual cluster expansion with 
w as the expansion parameter: 

]q (; - ,,f~) = ~ - ,,' Z f~, + .,2 y~ y. f d ~ ,  . . . .  

i, .i i < j i < j k < I 

(4) 

Each term in the expansion is represented by a set of Domb-Joyce 
diagrams. We shall be content to study the contributions to the partition 
function from two selected diagrams for three potentials: the usual 
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6-function interaction, a hard-sphere potential, and a hard core with an 
attractive tail. We have selected only one ladder diagram and one nonladder 
diagram, since the techniques and results are applicable to all diagrams. 

3. TWO D I A G R A M M A T I C  CONTRIBUTIONS 

There is only one diagram that contributes to the term in w; its 
contribution is 

i < ./ i 1 

Multiplying by =N and summing over all N, we easily see that the coef- 
ficient of w in (4) is the coefficient of z N in the usual generating function 
P2R, where 

P(z) = (1 - : ) - '  = u - '  

and R is defined in Eq. (3). The number UN is defined as 

N UN~-fli~--,'C(ri)]f(R'c~(R-- ~ ri) ( 5 )  

Continuing with the procedure outlined by Yamakawa, (4) we represent the 
6-function by a Fourier integral: 

6 ( r ) = ~  I d3k e ,k., 

Substituting into (5), we obtain 

' I  uN=(-~)3 d3Rd3ke- 'ka f (R)O(k)  (6) 

where 

N 

Q(k) = I-[ i d3ri eik'r'T(ri) 
i ~ l  

If we represent r(r) by a f-function, then (4~ 

Fsin ak ] u 
Q(k ) = L ~  j 
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We may now substitute this, and carry out the integrals with respect to 
angles. Finally, multiplying by z N and summing over all N~> 2, we obtain 

where 

z 2 f~ F(k) sin-' ak 
R(z)  2n2a 2 1 - z(sin ak)/ak dk (7) 

F(k) = F(k) = f d3r e ik" f ( r )  

Note that we have exploited the fact that F(k) is a function only of the 
modulus of k and that F ( k ) =  F ( - k ) .  

There is only one nonladder graph that contributes to the coefficient 
of w 2 in (4). The contribution of this diagram is the coefficient of z N in the 
generating function P2W 3, with 

w~'= Z r(r,,,) dSr,,, I-I r(r,) dSr, f(Roj) 
O < i < j < N  J l - i +  I 

N xE,+  ' 

Again inserting Fourier representations of 6-functions, integrating, and 
summing over N, we obtain 

W3(z) = (2x)-6 f F(kl )  F(k2) d3kl d3k2 

[ (  s i n a k j ' ~ ( l _  sina Ik, + k 2 l ) (  si_nak2"]1-1 
• ak, / \  " - ;TC+-kT. I  ak,_ /_l (8) 

Now, F may be expanded as a power series in kZ: 

F(k) = Fo + FI k 2 + F-,k 4 + ...  (9) 

If this expansion is substituted into (7) and (8), then the dominant parts 
of R and W 3 are obtained by retaining only the first term Fo. The higher- 
order terms provide the subdominant contributions if desired. 

4. C O M P A R I S O N  OF THREE POTENTIALS 

We are interested in three specific potentials: 

(i) f ( r )  = fl6(r) 
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0 if r < ro 
(ii) V(r )=  if r > r o  

(iii) V ( r ) = I  ~ if r < r o  

- U o  i f  r > r o 

The first of these is the standard assumed 5-function interaction for con- 
tinuum models of linear polymers. The constant fl represents an effective 
binary cluster integral. For  this model, Fo = F =  ft. We may therefore write, 
from (7), 

flz 2 f~ sin 2 ak 
R(-) = 2rt2a2 Jo 1 - - ( s i n  ak)/ak ark 

It is immediately clear that this integral does not exist, but it is not hard 
to show that the singular behavior arises from the contribution of N =  2 
step returns. The difficulty is usually avoided by invoking the cutoff or, 
equivalently, using the Gaussian model expression for UN: 

{3._3__~ 3/2 
u N "~ \ 2rta2 } fiN -3/2 

The nonladder contribution may be treated in a similar way. Sub- 
stituting F(k)= fl into the integral (8) yields the expression 

W3(z ) = f12(2n) - 6  f d3k, d3k2 

[( )(  sina 2 l _ s i n a k , ' ] (  1 s i n l k , + k ~ l  l - z  
x 1 , ~ j \  Ik ,+k21 ak2 JJ 

Following through calculations done elsewhere, ~j~) we obtain the perturba- 
tion series (1), with z defined in Eq. (2). 

These results are not new, but are useful for the calculations to follow. 
In particular, we note that the same series (1) will be obtained for any 
potential, if fl is replaced by Fo in the definition of z. It follows that the 
natural definition of z is Eq. (2), with fl replaced by Fo. 

The f-function interaction provides a simplified approach to the 
excluded-volume problem. The singular in.tegrals that arise are purely an 
artifact of the model, as can be seen from the corresponding integrals for 
the more realistic potentials. 
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For the hard-sphere potential, the Fourier transform is 

47U'o (sin rok rok) (10) F(k) =--~--_~ \ , . - j  cos 

When this is substituted into (6), we obtain the expression 

2to ~- (sin ,'ok , ok'~(sin ak'] N 
Uu=~fo dk\ ~ -cos " ]\--~. j 

Note that this integral is well-defined for all N, and can be performed for 
any given N to give a polynomial in (ro/a) with rational coefficients. We 
have used the symbolic language MAPLE to evaluate UN for several N; for 
ro = ba, we obtain 

b 2 b 3 b 3 3b 4 
/22 = --'4' ll3 = " ( '  ll4 - 6 64  

5b 3 b 5 b 3 b 5 5b 6 

us 48 8 0 '  l l6 = 15 80 + 

We have not yet found a general formula. 
We are also interested in the asymptotic formula for R(z) and W3(z). 

If (10) is expanded in powers of k, we obtain 

Fo 4 .3 3~1o (11) 

Since r o represents the diameter of the hard sphere, we simply replace the 
binary cluster integral by eight times the hard-sphere volume. 

The dominant contribution to W3(z) is obtained by substituting (11) 
into (8). The result is the same integral as obtained with the 6-function 
model, with /3 again replaced by 4nr3/3. 

It is not hard to see that this procedure will have the same result for 
the contributions of all diagrams. In consequence, the appropriate defini- 
tion o f -  for a hard-sphere chain is 

' 3 . 3 / 2  

z=12~a,_ ) (8Vo) N '/2w 

where V o is the volume of the hard sphere. 
We have chosen the third potential as a conveniently tractable func- 

tion that nonetheless exhibits all the essential features of the true inter- 
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monomer potential. It closely resembles, for instance, a Lennard-Jones 
function. We find for this choice 

F ( k ) = F ( h a r d  sphere)+~-~, n r s i n k r  l - e x p  ~ dr 
0 

The leading contribution, obtained by keeping only the first terms in the 
expansions of the sine and exponential in the integrand, is 

5. D I S C U S S I O N  

Application of Mayer expansion techniques to a freely jointed 
stick-bead model with a realistic potential shows that the effective binary 
cluster integral is written as the product of two factors, one which 
represents the geometric excluded volume and another which accounts for 
solvent or temperature effect. This distinction, of little consequence in the 
good-solvent regime, is important in the po0r-solvent regime because of the 
singularity in the effective binary cluster integral fl and is particularly 
important in any attempt to describe the crossover from poor- to good- 
solvent conditions. 

There is a fascinating example of the effect of the singularity. 
DesCloizeaux et al. ~8~ and Muthukumar and Nickel tg~ have summed the 
perturbation series (1) to obtain the asymptotic formula. 

~2= 1.53zO.354 (12) 

which is clearly at odds with numerical data for stick-bead chains ~21 and 
renormalization group results,l~l which suggest that 

C~2= 1.75Z ~ 

We suggest that the discrepancy arises because fl, and therefore z, has a 

different meanhlg in the good-solvent regime than in the poor-solvent 
regime. If, instead of z, one chooses as the relevant variable 

x = N 1/2 Vo 

with Vo the volume of the hard sphere, then (12) can be written 

~t 2 = 2.157X ~  



500 Barrett and Dornb 

and  the agreement  with the da ta  of ref. 12 is r emarkab ly  good. It would  be 
very in teres t ing to test this suggest ion on  o ther  models.  

T w o - p a r a m e t e r  theories still provide  the best descr ip t ion  of the poor -  
solvent  regime. Fo r  these theories, the app rop r i a t e  def ini t ion of the excluded-  
vo lume var iable  is 

z =  \2r ta2 j N l / ' -Fow  

Here F0 represents  the d o m i n a n t  c o n t r i b u t i o n  to the effective b ina ry  cluster  
integral ,  ob ta ined  from the expans ion  (9). S u b d o m i n a n t  correc t ions  may  be 
ob ta ined  from the h igher -order  terms. F o r  a di lute  po lym er  so lu t ion  with 
small  excluded volume,  the b ina ry  cluster  integral  is exactly what  it would  
be for a di lute gas whose particles are subject  to the same in teract ion.  F o r  
a chain  with large excluded volume,  the b ina ry  cluster  integral  will be very 
different. However ,  as we have shown,  the p e r t u r b a t i o n  series remains  valid 
for small  w. T h a t  is, even with a large geometr ic  excluded volume,  the 
pe r tu rba t ion  series still provides  an  accura te  descr ip t ion  nea r  the O point .  
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